

REFINING TECHNIQUES CHEMICAL VS PHYSICAL				
CHEMICAL REFINING		PHYSICAL REFINING		
MORE TOLERANT TO QUALITY	OF CRUDE OIL	SENSITIVE TO QUALITY OF CRUDE OIL- SOLUTIONS IN PLACE		
VERY GOOD SHELF STABILITY		VERY GOOD SHELF STABILITY-EXTRA CARE NEEDED		
VERY LOW COLOR		EXTRA COST TO PRODUCE LOW COLOR		
		TRANS FAT COULD BE AN ISSUE		
HIGHER PRICE OF FATTY ACID I	DISTILLATE	LOWER PRICE OF FATTY ACID DISTILLATE		
10/09/2019 SH	IRDI SAI NPL PAN:201841046 CONFEREN	449 SOPA INTERNATIONAL CE 2019	2	

ENZYME ASSISTED CHEMICAL REFINING DELIVERABLES

NEUTRAL OIL PAR	AMETERS:
• PHOSPHOROUS:	3-4 ppm
• SOAP CONTENT:	~250 ppm
• FFA:	0.08 %
• SOAP STOCK:	ALMOST FREE FROM GUMS- CAN BE SPLIT AT 80° C ADJUSTING pH to 4.5.
RESULTS OBTAINED ON WARD	TER DEGUMMED SOY OIL WITH ROHALASE F – PHOSPHOLIPID HYDROLYSING ENZYMES OF AB ENZYMES GmbH
10/09/2019	SHIRDI SAI NPL PAN:201841046649 SOPA INTERNATIONAL CONFERENCE 2019

7

Remco Muntendam Ghent 22-09-2016

- gums · Tech Lessons Learned
- Enzymes in General
 Enzymes in Degumming
 Potential benefits of EDG
- · Introduction DSM

DSM Life Sciences and Material Sciences company

We create solutions to bring healthier, better performing and more sustainable products to the lives of people today and for generations to come.

Net sales	about € 10,000m
Workforce	25,000

100 years of successful transformation

#1 position in the Dow Jones Sustainability World Index material industry sector; see www.sustainability-index.com

Building on an impressive history

Biotechnology is everywhere...

Enzymes are biocatalysts

Accelerate reaction rate by lowering energy threshold:

- Specific, resulting in desired conversion
- Lower temperatures, natural environment and less chemicals

Main constituents of crude vegetable oil?

Amounts & types of impurities in crude oil are determined by:

- Growing conditions
- Seed storage & handling
- Oil extraction method
- Other impurities (metals, tocopherols, carotenoids, chlorophylls) Page 6

Phospholipid Impurities Make A Difference

- Hydration increases with polarity and correlates with emulsifying strength
- Formation of metal salts reduces polarity and results in "nonhydratable" phospholipids

1. Sen Gupta, A.K., Fette Seifen Anstrichmittel V.88 pages 79-86 (1986) *in* Segers, J.C., et al., "Degumming – Theory and Practice" published by American Oil Chemists's Society in "Edible fats and Oils processing: basic principals and modern practices: World conference proceedings", edited by David Erickson, (1990) pages 88-93.

Emulsion Causes Yield Loss: Phospholipids

Oil losses are caused by intact phospholipids:

- Phospholipids (PLs) are emulsifiers
- PLs reduce surface tension between water and oil
- Oil is emulsified (& trapped) in the gum fraction
- Different PLs have different properties Hydratable or Non-hydratable

Water Degumming: Separation of Phospholipids

- Basic process to remove phospholipids falls between extraction & refining
- Process designed to minimize emulsion
- Target water wash degummed oil specification of < 200 ppm residual P
- Basic measurement of step yield AND little control of process
- Attention to "quality" only if coupled with caustic refining

Phospholipase Enzymes Break Emulsion

Disclaimer: more water added in favor of demonstrated effect

- Phospholipase enzymes uncouple oil & watersoluble parts of phospholipids
- Reaction requires contact between enzyme and phospholipid (*i.e.* emulsion)
- Enzyme action on phospholipids breaks down emulsion and releases entrained oil
- Reaction products create additional value

High Industrial potential for Purifine based enzymatic degumming

- Enzymatic degumming provides extra oil
- Less oil entrapment after enzymatic degumming

Commercial Degumming Enzymes

CE. BRIGHTER LIVING.

Purifine vs. PLA compared

600 ppm F	rapeseed oil		
	Purifine PLC	Single PLA	Purifine 3G
Oil	0,75	0,3	1,1
FFA	0	0,45	0,15

1200 ppm	P soybean oil		
	Purifine PLC	Single PLA	Purifine 3G
Oil	1,5	0,6	2,25
FFA	0	0,65	0,25

Basic principles of Enzymatic Degumming

Simple modification of standard degumming

Variable	Implementation		
Crude Oil Temperature	Cooled for Emulsion stability + Enzyme activity		
Process Control	Enzyme & water dosing, steady process flow		
Reaction Interface	High-shear emulsion maintained by agitation		
Reaction Time	Plug-flow reactor of sufficient size		
Effective Separation	Heat to break emulsion & optimized stack-disk centrifuge		
Maximize Reaction - Minimize Losses			

Rapeseed oil processes:

Rapeseed oil processes: multiple or flexible processing options

Rapeseed oil processes: multiple or flexible processing options

Introducing phospholipase-assisted degumming

Arjen Sein - EFL Plageen16e 2015

More Oil Means Higher Protein

Soy meal is the premier protein source, but:

- Soy protein levels are declining due to new varieties of seeds & farmers focus on yield
- Increased competition coming from DDGS, canola meal, synthetic amino acids & other ingredients
- Soy producers need to maintain leadership position by
 - Keeping protein levels high in meal products
 - Running plants efficiently and at capacity
- ✓ Purifine 3G EDG can help!

Sources:

Thomas A. Hammer, NOPA <u>http://unitedsoybean.org/wp-content/uploads/meal-supply-hammer.pdf</u> Park Waldroup, U. Arkansas <u>http://www.soymeal.org/FactSheets/soymealdemand.pdf</u>

Special Gum Product Creates Opportunities

Traditional outlets for gums are: •Lecithin, meal additive, acid oil feedstock, fuel

Enzymatic degumming Gums have different chemical, nutritional and energy profile:

- •P content 3X higher
- •Energy content 25% lower
- •Reaction products from PLC action on phospholipids are present at high levels and could be "natural" source of high-value ingredients

Nutrient	Unit	WDG gums	3G gums
Energy	% of oil	84%	62%
Phosphorus	g/kg	19	62
Choline	g/kg	20	72
Inositol	g/kg	21	63
Lyso-PL	g/kg	None	13

Table: WDG vs. 3G gums content compared

¹Indepedent research on behalf of DSM. Research under leadership of Willem Smink of Feed Innovation Services (The Netherlands) ²Cowieson et al., 2013; Zyla et al

Enzymatic degumming vs. Lecithin Drying for Soy Crushing Installations

- Maximizing profitability calls for flexible set-up?
- Lecithin plants that are EDG capable do exist
- Future value of GM soy lecithin in EU market?
- Enzyme degumming for a soy crushing plant is an off-the-shelf option!

Driver	Unit	2016	2015	2013
Refined Soybean Oil Price	€/MT	750	600	800
GM Crude Soy Lecithin Price	€/MT	300	200	400
GM Soy Meal Price	€/MT	300	350	450
Enzyme Dosing	ppm	200	200	200
Purifine 3G Price	€/MT	22,5	22,5	22,5
Total Yield	in %	2,50%	2,50%	1,60%
Lecithin Yield	in %	3,50%	3,50%	3,50%
Net profit EDG	€/MT	17,25	14,00	12,80
Net profit Lecithin	€/MT	10,50	7,00	14,00

2016 prices correspond with global average levels in April '16

Lessons From the Field: Optimizing Reaction Yields

- Enough reaction time is critical:
 - 2 Hr for simple degumming; 4-6 Hr for deep degumming
- Temperature control is critical:
 - Enzymatic degumming activities optimal between 55-60°C = (131-140°F)
- Emulsion is important:
 - \circ Silverson or IKA high shear mixer for emulsification of the oil
 - Water dosage (1.5-3%) impacts emulsification
- Low caustic dose enhances emulsion & degumming robustness:
 - \circ 50-200 ppm dosed in crude oil before enzyme addition
 - Dilute (15-20%) solution for accurate & safe dosing
 - \circ Mix thoroughly in oil before enzyme addition
 - \circ Optional: acid injection before separator for increase separation robustness.

DSM provides on site support for maximizing reaction conditions

Lessons From the Field: Driving for Low P

- Ensure availability & removal of NHP:
 - Citric is preferred to phosphoric acid (30-60 min)
 - Make sure oil is at 85-90°C during acid treatment
- Maximize reaction:
 - 4-6 h reaction time needed.
 - Bottom feed tanks, & ensure effective agitation to maintain emulsion
 - IKA-type HS mixer

Lessons From the Field: Visual Clues

• Visual observations can provide clues that a reaction is occurring

Emulsion after HS mixer

Particles agglomerate, Cloudlike appearance To stabile, bad separation

Gums exiting centrifuge

Liquid, flowing EDG Lumps of gums WDG

Purifine 3G: Enabler of Deep Degumming & Physical Refining?

- Prevent high losses in acid degumming or physical refining
- Enzymatic degumming is <u>the</u> enabling technology for physical refining on soy oil
- Other innovations (eg double scrubber) potentially increases overall value

Deep EDG: Comparison of Process Options

	PLA1	PLC+PLA1 (sequential)	Purifine 3G*
1 Separator P	< 20 ppm	< 20 ppm	< 30 ppm
2 Separator P	< 5 ppm	< 5 ppm	< 10 ppm
Est. Oil Yield Gain†	1.2%	2%	2.5%
Status	 Validated on industrial scale 10-15 Plants running 	 Validated on industrial scale 3 Plants running 	 Industrial trialing in progress
Specific Process Requirements	 4-8 h reaction time Acidic conditions Acid to prevent salts in separator 	 4-8 h reaction time Acid to prevent salts in separator 	• 2-6 h reaction time
Comments *Based on preliminary inc	 Low enzyme dose in good oils Much higher dose in poor oils Significant increase in FFA Lowest yield Justrial Protential 	 Low PLA1 dose in good oils, may need higher in poor oils Complicated engineering 2 Enzyme suppliers required Mid yield potential 	 Highest yield potential Drop in for PLA1 plants

†Compared with caustic refining assuming 4.5% losses & excluding FFA recovery

Take home message

- Purifine[®] solutions in enzymatic degumming provides higher yield due to less entrapment of oil and release of diacylglycerol with marginal fatty acid increase.
- Low P solution possible with minor process adaptation.
- Deliver technical field support from industrial experts to get process up and running efficiently.
- Purifine[®]: More oil more profit!

While making reasonable efforts to ensure that all information in this presentation is accurate and up to date, DSM makes no representation or warranty of accuracy, reliability, or completeness of the information. The information provided herein is for the informational purposes only.

This publication does not constitute or provide scientific advice and is without warranty of any kind, express or implied. In no event shall DSM be liable for any damage arising from the reader's reliance upon, or use of, this presentation. The reader shall be solely responsible for any interpretation or use of the materials contained herein.

BRIGHT SCIENCE. BRIGHTER LIVING.™

Need More information?

Contact DSM: Remco.Muntendam@DSM.com Arjen.Sein@DSM.com Steve.Gregory@DSM.com

(Application Scientist)(Senior Scientist Oils and Fats)(Global Field Expert Oils and Fats)

Page 28